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Elementary exposition is given of some recent developments in studies of graph- 
theoretic aspects of the Potts model. Topics discussed include graphical expan- 
sions of the Potts partition function and correlation functions and their 
relationships with the chromatic, dichromatic, and flow polynomials occurring 
in graph theory. It is also shown that the Potts model realization of these classic 
graph-theoretic problems provides alternate and direct proofs of properties 
established heretofore only in the context of formal graph theory. 
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1. I N T R O D U C T I O N  

Studies of the Potts modeU 1) are often facilitated by the use of graphical 
terms and graphical analyses. The connection of the Potts model with 

: graph theory was first formulated by Kasteleyn and Fortuin, ~2'3) who treated 
the bond percolation, resistor network, spanning trees, and other problems 
of' graph-theoretic nature as a Ports model. Conversely, graph-theoretic 
considerations have led to formulations of the Potts model leading to 
results in statistical mechanics otherwise difficult to see. (For reviews of the 
Potts model see Wu. ~4'5)) More recently, Essam and Tsallis (6) uncovered 
the connection of the Potts model with the flow polynomial in graph 
theory, (7'8) and this consideration has since been extended to multisite 
correlation functions (9) and their applications ~1~ and the associated duality 
relations. (11) However, many  of these findings are presented in formal 
mathematical  language and often rely on theorems established in graph 
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theory. As a result, the significance of these developments does not appear 
to have been generally appreciated. 

In this paper we present a self-contained, albeit elementary, exposition 
of these recent developments. While most of the results presented here are 
not new, our derivations are less formal and in many instances more direct 
than those previously given, thus shedding new light to the role played by 
these classic graph-theoretic problems in statistical physics. 

Definitions useful to our discussions are given in Section2. In 
Section 3 we describe high-temperature expansions of the Potts partition 
function and their associated graphical representations, and show that they 
lead to the chromatic, dichromatic, and flow polynomials in graph theory. 
In Section 4 we discuss properties of the flow polynomial and show that 
the Potts model formulation leads to alternate and simple proofs of 
these properties. In Section 5 graphical considerations are extended to 
correlation functions. 

2. DEF IN IT IONS 

Consider a standard Potts model on a graph G of N sites and E edges 
(we assume that G does not contain single-edge loops). The spin at the ith 
site can take on q distinct values ai = 1, 2,..., q, and the Hamiltonian is 

- f l ~ = K  E •Kr(0"i' 0"j) (1) 
eEG 

where the summation extends to all edges in G. It should be noted that, 
while we have assumed the same interaction K along all edges, our 
discussions and results can be extended to include edge-dependent 
interactions. We chose not to consider this generalization, however, for the 
sake of retaining clarity of discussions. A concise summary of results in the 
general case can be found in ref. 10. 

It is often convenient to regard the spin ai as being represented by a 
unit vector gi pointing in one of the q symmetric directions of a hyper- 
tetrahedron in q - 1  dimensions. The connection to (1) is then made by 
using 

6Kr(ai, O ' j ) 1  [-1 q- (q-- 1)g~'s (2) 
q 

The partition function is 

Z a = Tr e ~ (3) 

where the spin sum Z~,= 1,2,...,q has been denoted by taking the trace. When 
K =  -0% all pairs of neighbors connected by edges must be in different 
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states. Then in this limit the partition function becomes the chromatic 
function, 

zGI e~_o = P(q, G) (4) 

which gives the number of q-colorings of G, i.e., the number of ways that 
the N vertices of G can be colored with q colors such that two vertices 
connected by an edge always bear different colors. 

The m-spin correlation function for spins at sites 1, 2 ..... m is the 
probability that vectors Sl,'",Sm point in the same direction. This 
probability is given by 

F12 . . . .  - Z G  ~ Yr[Sl~S2~ . . . s ,~  exp( - / L ~ ) ]  

(S1~ ,$2~  . .  "Smog)  T (5) 

where the superscript T denotes the thermal average dictated by taking the 
trace. Here s~ -- g~- ~ ,  and ~ is a unit vector pointing in the direction e of 
the hypertetrahedron. In particular, the one-spin correlation function 

1 
F~ = {sis) r = ( q 6 ( a , ,  ~ ) -  1 ) v  (6) 

q - 1  

is the order parameter of the ferromagnetic Potts model, whose numerical 
value lies between 0 and 1. 

More generally, one defines a par t i t ioned  m-spin correlation function (9) 
as the probability that spins at vertices 1, 2 ..... m are partitioned into b 
(~q )  blocks such that (i) all spins within a block are in the same spin 
state, and (ii) the spin states of the b blocks are all distinct. For each block 
partition P ( m )  of the m integers 1, 2,..., m, the corresponding partitioned 
correlation function is 

I7' F p ( m )  = Si:r (7) 
i ~ B  

where B is a block index and the prime of the second product indicates the 
restriction (ii), namely, spin states of the b blocks are all different. Clearly, 
(7) becomes (5) when there is only one block, so that b = 1 and P ( m ) =  

(12-. .m). 
Graphical representations that we shall encounter are derived on the 

basis of the Mayer expansion, (12) which converts a product of edge factors 
into a summation of products over subgraphs. The basic identity, which we 
shall use repeatedly, is 

H (l+h,j)= Z 1-I ho (8) 
e ~ G  G'~_G e E G '  
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Here, the edge factor connecting vertices i and j is written as 1 + hu, and 
the summation of the rhs of (8) is taken over all subgraphs G' _ G covering 
the same vertex set. 

It is convenient to introduce a "percolation" average as follows: 
Consider subgraphs G ' ~  G, which we regard as representing percolation 
configurations with bond occupation probability p. Then, the percolation 
average of any quantity X(g) considered as a function of the subgraph g is 
defined to be 

(X)p=- ~ X(g) pb(g)(1--p) E-b(g) (9) 
g ~ G  

where b(g) is the number of edges in g. 
We may rewrite (9) as a power series in p. Expanding (1 -p)E-b(g) in 

(9), we obtain 

(X>p = ~ X(g)pb(g)~ (_p)b(g') (10) 
g~_G g' 

where g' is a set of edges not in g. The union of the two edge sets g and g' 
constitutes a subgraph of G. Call this subgraph G ' _  G, so that 

b(a') = b(g) + b(g') (11) 

and regard g as a subgraph of G '. It folows that (10) can be rewritten as 

G'~--G g~--G' 

= ~ pb(a')Q(X, G') 
G ' ~ G  

(12) 

where the expansion coefficient in the p series is 

Q(X, G)-  ~ (--1)b(G)--b(g)X(g) (13) 
g~G 

Relations (12) and (13) hold for any X(G'), which may describe, e.g., 
connectivity properties of G'. 

We can obtain an inverse of (13) if X(G) is expressible as the trace 
over a product of edge factors, i.e., 

X ( G ) = T r  I-I hu (14) 
e e G  
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In this case it is easily verified 2 that 

Q(X, G)=Tr 1[-[ (h i j -  1) (15) 
e~G 

Writing in (14) h i j = l + ( h i j - 1 )  and again expanding the resulting 
expression using (8), we obtain the following inverse of (13): 

X(G)= ~ Q(X, G') (16) 
G ' ~ G  

This is one example of the M6bius inversion, (13) which generally inverts 
summations over partially ordered sets (14) and follows as a consequence of 
the principle of inclusion and exclusion. ~5) 

3. H I G H - T E M P E R A T U R E  E X P A N S I O N S  OF THE PARTIT ION 
FUNCTION 

It is most natural to obtain expansions of the Potts partition function 
using the Mayer expansion. This is done by writing the edge Boltzmann 
factor in (3) as a sum of two terms and expanding using (8). This leads to 
different expansions when the Boltzmann factor is split differently. 

The most often used expansion, (2'3) which forms the basis of relating 
the Potts model to the bond percolation problem, involves rewriting the 
partition function (3) as 

ZG =Tr l-[ [1 + (e x -  1) s O'j)] (17) 
e E G  

Using (8) with h~= (e K -  1) 6 U, one finds for the partition function (17) the 
simple form after taking the trace: 

Zc=-Z(q, e 1~- 1)=  ~ (e K -  1)b(~'~q "(c') (18) 
G ' ~ G  

where n(G') is the number of components, including isolated points, in G'. 
This is a high-temperature expansion, since e K -  1--+0 at high tem- 
peratures. The function Z(x, y) is the dichromatic polynomial in graph 
theory [cf. ref. 8, (IX.I.12)] and the function xNZ(x, y/x) is known as the 
Whitney rank polynomial. (16'17) It is also known that the dichromatic 
polynomial, hence the Potts partition function, generates spanning trees (3) 
and forests ~18) by taking appropriate q = 0 limits. See ref. 4 for a descrip- 
tion of these connections. 

2 Expand (15) as in (8) and compare with (13). Note the extra minus signs. 
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One immediate consequence of (18) is, upon using (4), 

P(q, G)=  ~ (-1)b(a')q "(c') (19) 
G'cG 

This is the Birkhoff (~9) formula for the chromatic function, establishing the 
fact that P(q, G) is a polynomial of q. 

The quantity (--1)b(G)ZG given by (17) is of the form of (15) with 
h~= - ( e  K -  1)6ij. It follows from (14) and (16) that the inverse of (18) is 

(1- -eK)b(G)q  "(~)= ~ ( - - 1 ) b ( ~ ' ) Z G ,  ( 2 0 )  

G'~G 

Equation (20) is a peculiar sum rule for the Potts partition function, 3 
which does not appear to have been previously noted. In the special case of 
K =  -0% (20) becomes, after introducing (4), the following inversion for 
the chromatic polynomial: (16) 

qn(C)= ~ (__l)b(G')p(q, G') (21) 
G'~G 

The partition function ZG can now be written as a power series in p. 
Using (9) and (12) with X = q ' ,  Q= (--1)bP, we obtain 

ZG = eEK(q"  )P (22) 

= e  EK ~ P(q, G ' ) ( - p )  b(c') 
G'~G 

where we have introduced (19) and 

p= 1 - e  -K (23) 

Generally, any splitting of the edge Boltzmann factor (into a sum of 
two terms) other than that in (17) will lead to a different expansion 
equivalent to a resummation of the p series. A particularly useful splitting 
is to write 

1 + (e K - 1 )6~ = A [(1 - t) + qtSij] = A(1 + qtf, y) (24) 

where 
1 

A =- - (eX+q - l) (25) 
q 

1 - - e  - K  

t= 1 + ( q -  1)e -K (26) 

f j = 6, 7 -  q-1 = q - 1 gi" g1 (27) 
q 

3 If G is a connec ted  g raph  such  as a lattice, then  b(G) = E, n(G) = 1. 
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For two-dimensional systems the variable t is the corresponding 
Boltzmann factor e-K in the dual space, but more generally t is the thermal 
transmissivity arising in renormalization group treatments (2~ of the Potts 
model. The substitution of the first identity in (24) into (17) now leads to 
the expression 

Zc=AE(qb+">, 
(28) 

=qXA~(qC)t 

Here, use has been made of the Euler relation 

b(G') + n(G') = N+ c(G') (29) 

where c(G') is the number of independent circuits in G'. The advantage of 
introducing the t variable becomes apparent when we write ZG as a power 
series in t. This is done by identifying qC and F as, respectively, X and Q in 
(12) and (13). This leads to 

ZG=q NAE 2 F(q, G')t b(6,) (30) 
G'~_G 

F(q, G)-~ ~ (--1)b(G)-b(g)q C(g) (31) 
g~_G 

The expansion coefficient F(q, G) in the t series is precisely the flow 
polynomial occurring in graph theory. (7'8) 

An alternate expression for the flow polynomial can now be for- 
mulated using the Potts model realization. Substituting the second identity 
of (24) into (17) and comparing the resulting expression with (30), we 
obtain the expression 4 

F(q, G')=qb(C')-NTr [-[ f,j (32) 
e ~ G '  

valid for any G' _c G. Now, (32) is of the form of (15) with hij = 1 + qf, j; it 
follows that we can use (16) and (14) to obtain an inverse of (31). This 
leads to 

Z F(q,G')=q -uTr  1-[ ( l + q f ,  j) 
G ' ~ G  e ~ G  

= q f Tr 1-[ (qfi,j) 
e E G  

= q - - N + b ( G ) + n ( G )  

= qC(a) (33) 

4 Direct evaluation of (32) using the first identity in (27) for f,j again leads to (3l). (Cf. ref. 6.) 

where 
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If G is planar, then consider its dual D and the associated subgraph 
D'~_D complementing g; we then have b(g)+b(D')=b(G),  e(g)= 
n(D ' ) -  1 and, after introducing (19), (31) becomes 

F(q, G) -- q - -1  p(q, D) (34) 

A general high-temperature expansion, which encompassess both the p 
and t expansions described above, is obtained by writing, in place of (24), 

where 

l + ( e K - 1 ) f o . = A u [ ( 1 - t u ) + # t . f ~ ] = A u [ l + # t ~ f ~ j ( I t ) ]  (35) 

A u = (e K + # - 1)/# (36) 

t~ = (1 - e - K ) / [ 1  + (l~- 1)e -K] (37) 

f,j(#) = 6 u - #  -1 (38) 

and/~ is a parameter which can be chosen at our disposal. By taking # = 1 
and/~ = q, e.g., (35) generates the p and t expansions, respectively. 

In analogy to (28) and (30), we now have 

Z G .~- N E c n A t ( #  (q/Y) )~ 

N E = p  Au ~ F(/~, q, G')tb, (G') (39) 
G ' ~ _ G  

where 

f(#, q, G) = ~ ( - 1 )  b(a) b(~')#c(a') (40) 
G ' ~ G  

which becomes (-1)b(a)P(q, G) and F(q, G), respectively, for # =  1 and 
/~ = q. One can also write, as in (32), 

F(#,q, G ' ) = #  b(a') NTr [ l  fo(~ t) (41) 
e c G '  

from which one obtains the inverse of (40) by following (33): 

(q)n(a) = G') (42) /~c(a) ~ F(#, q, 
G ' ~ G  

Similarly, using arguments leading to (34), one derives for planar G the 
following duality relation: 

I~F(It, q, G ) = ( - 1 ) e q  (43) 
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The p expansion (22) of the Potts partition function is well known 
from its connection with the bond percolation. (2'3) Consideration of the t 
expansion (28) and (30) also has a long history. Nagle ~2~ considered the 
special case of t = - ( q - 1 )  -~ in a numerical evaluation of the chromatic 
function for a lattice. Domb (22) analyzed the case of general t and explicitly 
evaluated what is equivalent to (31) for small star graphs. The expression 
(34) for planar graphs was observed by Wu, (4'23) who also expressed 
F(q, G) in the form of a recursion relation of the Potts partition function. 
However, it was only recently that Essam and Tsallis (6) explicitly obtained 
(31) and pinpointed its connection with the flow polynomial in graph 
theory. The formulation in terms of the variable t,  and the associated 
generalized coefficients F(#, q, G) is due to de Magalh~es and Essam/9~ 

4. F L O W  P O L Y N O M I A L  

The flow polynomial (3l) is known to possess a number of graph- 
theoretic properties. While many of these properties follow intuitively from 
the concept of "flow" of the polynomial (see description below), their 
derivations have so far appeared only as theorems in formal graph 
theory. (7'8) The formulation of the flow polynomial as expansion coef- 
ficients in the t expansion of the Potts partition function, particularly the 
representation (32) for F(q, G), now provides alternate proof of these 
properties, which can be more easily visualized. 

We first state some of the more important properties. 5 

1. F(q, G ) = 0  if G has a vertex of degree one or an isthmus (an 
articulation edge). 

2. F(q, G) is topologically invariant. 

3. If G has components (which may have articulation vertices in 
common), then F(q, G) is equal to the product of the flow polynomials of 
individual components. 

4. Contraction-deletion rule: 

F(q, G)=F(q, G~)-F(q, G ~) (44) 

where G ~ is G with one edge contracted and G 6 is G with the same edge 
deleted. 

s See ref. 8 for a complete list and formal proofs of all properties of the flow polynomial. 
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The above (and other) properties of F(q, G) can be estalished by using 
the representation (32) for the flow polynomial and the readily verified 
identities 

Tr j~ j=  0 (45) 

Trjfofjk =f,~ (46) 

where fo = 6u - q-l" 
Consider first property 1. If G has a vertex of degree one, then, upon 

using (45), F(q, G) vanishes identically by tracing over the spin variable of 
this spin. If G has an isthmus, we use the spin symmetry, which states that 
the trace over a cluster of spins except one is independent of the spin state 
of the untraced spin. Thus, we trace over all spins located in an isthmus 
except the one at the articulation point. Due to the spin symmetry, this 
gives rise to a common factor, irrespective of the spin state of the remaining 
spin. The remaining spin can therefore be treated as a vertex of degree one, 
and its trace now gives F(q, G)= O. 

To prove property 2, we see from (46) that a sequence of edges can be 
combined into a single one without affecting F(q, G). Furthermore, the 
exponent b(G')-N=c(G')-n(G')  in (32) is also unchanged when a 
sequence of edges is combined. This establishes the fact that F(q, G) is 
topologically invariant. 

Property 3 is self-evident when the components are disjoint. When 
there are articulation vertices, decompose G into disjoint clusters by 
separating at the articulation points. The extra q factors thus introduced in 
(32) from the trace of the extra vertices (created in the decomposition 
process) cancel exactly with the q factors introduced by the increase of N, 
the number of vertices. Thus, the flow polynomial (32) is given by the 
product of those of its components as if they were disjoint. This establishes 
property 3. 

Property 4 can be established as follows: Let the contracted and 
deleted edge be (1, 2) and rewrite (32) as 

F(q,G)=qb(a) NTr[f12 lq fo I (47) 
e~(1,2)  

Now both the contraction and deletion of a single edge decrease the total 
number of edges by 1, implying 

b(G)-N=b(GT) - ( N -  1) = b(Ga) + 1 - N  (48) 
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Using (48) and by observation, we see 6 

F(q, G ~) = F(q, G)[r~2= ~1 ~ (49) 

F(q, G~)=q 1F(q, G)Jf~2=~ (50) 

Property 4 is now established by substituting fl2 = 612 - q 1 into (47) and 
splitting (47) into two terms as in ft2. 

For  completeness, we now describe the graph-theoretic meaning of 
F(q, G) in the context of a flow. Orient all adges of G. A given orientation 
of G defines an N x N incidence matrix whose elements are 

D• = -D j i  = 1 if edge/ j  is directed from i to j 
(5~) 

= 0 if no edge connects i and j 

A flow on G is specified by assigning to each edge a number  q~e satisfying 
the flow condition 

~ Doqso =O (52) 
] 

at all vertices i. If  one visualizes G as a network with electric currents ~o e 
flowing along its edges, then (52) is the mere statement of the first 
K~rchhoff law, that the net outgoing current is zero at all nodes. Clearly, 
the reversal of the orientation of one particular edge corresponds to the 
negation of the associated ~b e, hence does not create a new flow con- 
figuration. 

A mod-q flow is a flow specified by integral ~b e = 0, 1,.,. (rood q). A 
proper mod-q flow is one for which none of the ~/'e is zero. The counting of 
the number  of proper mod-q flows is a highly nontrivial problem. Tutte (7'8) 
showed that this number  is given precisely by F(q, G). The correctness of 
this counting can also be verified b y  applying the following argument: (x4) 
First, (33) states that the total number  of mod-q flows is qC(G).7 To obtain 
the number  of proper mod-q flows, we must subtract the number  of flows 
with some zero q~e' We do this by applying the principle of inclusion and 
exclusion, (15) i.e., by deleting those flows with exactly one branch carrying 
zero current, including those with exactly two branches carrying zero 
current, etc. This leads to (31). See ref. 6 for a table of flow polynomials for 
all graphs with five or fewer independent circuits. 

6 In writing down (49) we use the fact that the contraction of an edge reduces the number of 
verices by 1. 

7 This fact is implicit in the Kirchhoff law, when one assigns loop currents to a network to 
describe its current configuration. 
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5. SPIN C O R R E L A T I O N  F U N C T I O N S  

In this section we show that correlation functions of the Potts model 
can also be represented by graph expansions. (9) To keep our presentation 
simple and concise, we confine it to essential results. See ref. 9 for more 
general discussions. 

Consider first the m-spin correlation function F12 . . . .  defined by (5), 
which is the probability that spins at sites 1, 2,..., m all point in the same 
direction ~. By spin symmetry, this correlation is independent of e. It is 
then convenient to sum over e, which can be regarded as replacing ~ by a 
spin go. This leads to the consideration of a graph G + derived from G by 
adding an extra vertex numbered 0, the ghost vertex, connected to vertices 
1, 2,..., m. Thus, upon introducing (24) and (27), (5) becomes 

/"12 . . . .  = (qZG) -~Ae Tr+ f~o" ' fmo  1-I (1 + q ~ j )  
e ~ G  

I ] = ( q Z a )  -1Ae ~ (qt) b(c')Tr+ f a0"" f , , o  l-[ f,:/ 
G'~- -G  e ~ G '  

(53) 

where we have used (8), and Tr + denotes that the trace is being taken 
over G + 

Let 

g' = G' w gl "'" ~ gm (54) 

where gi is the edge linking vertices i and 0. Compared to G', g' has m 
more edges and one more vertex. Then, by (32), the flow polynomial 
on g' is 

F(q, g')=qb~G')+m-~N+~)Tr+ [f~o...fmO H fa] 
e ~ G '  

(55) 

The substitution of (55) and (30) for Z6 into (53) now leads to the 
following expression for the m-spin correlation function: 

1 )mz~,~_~F(q,g')tb~G') 
/"12""= ~ •G'=_GF(q, G')t  b~G') (56) 

To obtain an expression similar to (56) for the partitioned correlation 
function Fp~,,) defined by (7), consider first a partitioned correlation 
without the restriction (ii) described in Section 2. That is, a partitioned 
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correlation for which spin states in different blocks are not necessarily 
distinct. This "modified" partitioned correlation is given by 

0 _ (57) FP(m)- H si~B 
i~B 

which is (7) with the prime over the second product removed. Following 
o the same reasoning as in the above, it is straighforward to verify that l"p(m) 

is also given by the rhs of (56), provided that a ghost vertex is introduced 
for each block of P(m), and that the ith vertex is connected to its block 
ghost spin via the edge gi- 

o It is not difficult to see that Fe(m) can be written as a linear com- 
bination of Fp(m). Write (57) as 

Fe(m ) = (ZG)-I T r  1-I SiTB e - ~  
i~B 

and recall that the trace in (58) is taken without the restriction (ii), so that 
spin states of different blocks may or may not be equal. We can therefore 
expand this trace into a summation of traces for which spin states of 
different blocks are always distinct. A moment's reflection shows that this 
leads to the expression 

o _ (59) rp(m)-- 2 c(q, b') l~p,(m) 
p'~p 

where the summation is taken over all block partitions P'(m) of the m 
integers 1, 2,..., m such that every block of P is contained in a block of P', 
b' is the number of blocks in P', and c(q, b') is the number of q colorings of 
the b' blocks such that they all bear different colors. This number is given 
by 

c(q, b') =- q(q-  1)- . .  (q - b' + 1) (60) 

Now (59) is a sum over a partially ordered set of the partition P(m), 
and therefore has a M6bius inverse. The inverse is O4) 

1 
r~(m)=c(q, b) y~ u ( P '  P ' )  F~ (61) 

p'>~ p 

with the M6bius function 

#(P, P ' ) =  (--1)b-b'(2!)a3(3r) a ' .-- [ ( m -  1)!] a" (62) 

Here, a; specifies the class of P', i.e., a; = 0, 1 ..... b' is the number of blocks 
in P '  (which are in the same block of P) having i elements. 

822/52/l-2-8 
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